Molecular Oncology

ISSN 1574-7891 Volume 19 Supplement 1 June 2025

A journal for discovery-driven translational cancer research

2025.eacr.org

EDITORIAL BOARD

Editor-in-Chief

K. Ryan (Glasgow, UK)

Founding and Advisory Editor

J. Celis (Copenhagen, Denmark) Senior Associate Editors

U. Ringborg (Solna, Sweden)

J. E. Visvader (Parkville, Victoria, Australia)

Section Editors

P. Adams (La Jolla, USA)

H. Allgayer (Mannheim, Germany)

S. H. Baek (Seoul, South Korea)

M. Boutros (Heidelberg, Germany)

G. Calin (Houston, Texas, USA)

A. Edkins (Makhanda, South Africa)

M. Esteller (Barcelona, Spain)

O. Fernandez-Capetillo (Madrid, Spain)

E. Garralda (Barcelona, Spain)

E. M. Hammond (Oxford, UK)

Å. Helland (Oslo, Norway)

M. Mazzone (Leuven, Belgium)

G. Melino (Leicester, UK)

K. Pantel (Hamburg, Germany)

E. Papaleo (Copenhagen, Denmark)

F. Pareja (New York, USA)

J. E. Ricci (Nice, France)

K. Sabapathy (Singapore)

J. Schüz (Lyon, France)

J. Silke (Parkville, Australia)

A. Valencia (Barcelona, Spain)

B. Will (New York, USA)

J. Yu (Hong Kong)

W. Zwart (Amsterdam,

The Netherlands)

Editorial Board

R. Aebersold (Zurich,

Switzerland)

K. Alitalo (Helsinki, Finland)

G. Almouzni (Paris, France)

M. Barbacid (Madrid, Spain)

A. Bardelli (Torino, Italy)

J. Bartek (Copenhagen, Denmark)

S.B. Baylin (Baltimore, MD, USA)

R. Bernards (Amsterdam,

The Netherlands)

A.J.M. Berns (Amsterdam,

The Netherlands)

M. Bissell (Berkeley, CA, USA)

C. Blanpain (Brussels, Belgium)

A. Børresen-Dale (Oslo, Norway)

C. Caldas (Cambridge, UK)

F. Carneiro (Porto, Portugal)

E. P. Diamandis (Toronto, ON, Canada)

P.P. Di Fiore (Milan, Italy)

S.H. Friend (Seattle, WA, USA)

T.R. Golub (Boston, MA, USA)

H.B. Grossman (Houston, TX, USA)

N. Harbeck (Münich, Germany)

D.F. Hayes (Ann Arbor, MI, USA) C.-H. Heldin (Uppsala, Sweden)

T. Helleday (Stockholm, Sweden)

H. Hricak (New York, NY, USA)

T. Hunter (La Jolla, CA, USA)

J. Ivaska (Laskut, Finland)

E.S. Jaffe Bethesda (Maryland, USA)

O. Kallioniemi (Turku, Finland)

G. Kroemer (Villejeuf, France)

R. Kunal (Houston, Texas, USA)

O.C. Lingjaerde (Oslo, Norway)

E. Liu (Singapore, Singapore)

C. Lord (London, UK)

T. W. Mak (Toronto, ON, Canada)

R. Marais (London, UK)

E. Mardis (St. Louis, MO, USA)

J. Massagué (New York, NY, USA)

G.B. Mills (Houston, TX, USA)

P. Nagy (Budapest, Hungary)

M. Oren (Rehovot, Israel)

D. Peeper (Amsterdam, The Netherlands)

M. Piccart (Brussels, Belgium)

S. Piccolo (Padua, Italy)

J.W. Pollard (Edinburgh, UK)

D.F. Ransohoff (Chapel Hill, NC, USA)

H. Sasano (Sendai, Japan)

J. Seone (Barcelona, Spain)

P. Spellman (Portland, OR, USA)

K. Steindorf (Heidelberg,

Germany)

J. Tabernero (Barcelona, Spain)

D. Tarin (La Jolla, CA, USA) M.L. Tykocinski (Philadelphia,

PA, USA)

N. Urban (Seattle, WA, USA)

P. Vineis (London, UK)

K. H. Vousden (Glasgow, UK)

A. Wellstein (Washington, DC, USA)

P. Workman (Sutton, UK)

H.-M. Yang (Beijing, China) Y. Yarden (Rehovot, Israel)

T. Yeatman (Tampa, FL, USA)

O. Zhan (Beijing, China) L. Zitvogel (Villejuif, France)

EDITORIAL OFFICE
Ruzhica Bogeska, Managing Editor
Ioannis Tsagakis, Editor
Siddhi Maniyar, Editor
Irene Alvarez Domenech, Editorial Assistant
Email: molonc@febs.org

PRODUCTION EDITOR
Swetha Hari
(molecularoncology@wiley.com)

Molecular
(mole and copy the article, to remix, transform and build upon the material, to text or data mine the article, even for commercial purposes, as longer as they credit the author(s), indicate if changes were made, and do restored to the author of the au represent the author as endorsing the adaptation of the article.

represent the author as endorsing the adaptation of the article.

Disclaimer The Publisher, FEBS and Editors cannot be held responsely to the for any errors in or any consequences arising from the use of information contained in this journal. The views and opinions expressed not necessarily reflect those of the Publisher, FEBS or Editors neither does the publication of advertisements constitute any endorsements the Publisher, FEBS, Editors, or Authors of the products advertised to the Publisher, FEBS, Editors, or Authors of the products advertised to the Publisher, FEBS, Editors, or Authors of the products advertised to the Publisher, FEBS, Editors, or Authors of the products advertised to the Publisher, FEBS, Editors, or Authors of the products advertised to the Publisher, FEBS, Editors, or Authors of the Publisher, FEBS, Editors, editors or Edit

Wiley Open Access articles posted to repositories or websites are a second with the control of t without warranty from Wiley of any kind, either express or implied, including, but not limited to, warranties of merchantability, fitness for including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. To the fullest extent permitted by law Wiley disclaims all liability for any loss or damage arising out of, or in connection with, the use of or inability to use the content.

(https://onlinelibrary.wiley.com/

scans. There may be a relationship between MST and sarcopenia, showing potential as a clinical prediction tool of sarcopenia risk. Given the small sample size, further larger powered studies are needed to confirm the relationships between more commonly used nutrition assessment tools and their predictive value in identifying sarcopenia.

EACR25-0342

Treatment response and survival of patients with early-onset compared to older-onset colorectal cancer in the Netherlands

<u>L. Borghuis</u>¹, S. van Hooff¹, L. Vermeulen¹, T. Buffart²
¹Amsterdam UMC, Laboratory of Experimental
Oncology and Radiobiology, Amsterdam, Netherlands
²Amsterdam UMC, Medical Oncology, Amsterdam,
Netherlands

Introduction

The incidence of patients with early-onset colorectal cancer (eoCRC) (<50 years) is rising. The aim of this study is to investigate response to current treatment and survival in patients with eoCRC compared to older-onset CRC.

Material and method

Clinicopathological data, including treatment response and survival of patients diagnosed between 2016 and 2022 were requested from the Netherlands Cancer Registry. EoCRC patients were compared to patients 50-70 and ≥70 years of age. Additionally, eoCRC patients were matched with patients 50-70 and ≥70 years based on tumor stage, RAS/BRAF mutations, tumor sidedness and therapy. To compare groups, two sided X2 and Fisher's exact tests were used. Overall survival (OS) was analyzed with Kaplan Meier and median survival times were compared with the log-rank test (R software). P-values < 0.05 were considered significant.

Result and discussion

Between 2016 and 2022, 81,769 patients were diagnosed with CRC, including 3,948, 34,918, and 42,930 patients <50, 50-70 and \ge 70 year, respectively. Patients <50 and ≥70 years had worse OS compared to patients aged 50-70 years (p <0.001; HR, 1.14 (95% CI, 1.07-1.21); HR, 2.06 (95% CI, 2.06-2.11)) with a 5-year OS of 69%, and 54%, compared to 73%, respectively. EoCRC patients with high risk stage II CRC (T4N0) have a similar OS compared to patients 50-70 years, but better than patients \geq 70 years (p = 0.02; HR, 2.19 (95% CI, 1.15-4.16); p = 0.03; HR, 1.46 (95% CI, 1.04-2.05), respectively). EoCRC patients with high-risk stage III (T4 and/or N2), have worse OS compared to patients 50-70 years (p = 0.03; HR, 0.81 (95% CI, 0.67-0.98)), while OS in lowrisk stage III (T1-3/N1) was similar. Patients \geq 70 years have worse OS compared to patients 50-70 years in both high- and low risk stage III CRC (p < 0.001; HR, 1.41 (95% CI, 1.28-1.55), p <0.001; HR, 1.80 (95% CI, 1.58-2.06), respectively). EoCRC patients with pMMR stage IV disease at diagnosis have better OS, while patients ≥70 years of age have worse OS compared to patients 50-70 years (p < 0.001; HR, 0.56 (95% CI, 0.79-0.93), p < 0.001; HR, 1.55 (95% CI, 1.47-1.64), respectively). EoCRC patients more often received triple therapy

(fluoropyrimidine + oxaliplatin + irinotecan +/-bevacizumab) in first line compared to older patients, (20%, 10% and 3% for patients <50, 50-70 and \geq 70 years, respectively). Patients \geq 70 years more often received fluoropyrimidine monotherapy +/- bevacizumab (8%, 14% and 40%, respectively). After matching no significant difference in OS was observed between eoCRC patients and patients 50-70 years. OS of patients \geq 70 years remained worse.

Conclusion

OS of eoCRC patients with high-risk stage II and low risk stage III was similar to patients 50-70 years, but OS was worse in high-risk stage III eoCRC. EoCRC patients with pMMR stage IV CRC have better OS but also receive more intense systemic therapy. OS difference between eoCRC and patients 50-70 years disappeared after matching. Survival of patients ≥70 years remained worse.

EACR25-0416

SWOT Analysis for Maintaining the Sustainability of Newly Established Rectal Cancer Biobank at the Institute for Oncology and Radiology of Serbia

S. Bjelogrlic¹, M. Tanic¹, A. Krivokuća¹, A. Đurić¹, M. Marinković², A. Stanojević¹, T. Botta-Orfila³, S. Castellví-Bel⁴, R. Fijneman⁵, M. Čavić¹

¹Institute for Oncology and Radiology of Serbia, Department of Experimental Oncology, Belgrade, Serbia

²Institute for Oncology and Radiology of Serbia, Clinic for Radiation Oncology, Belgrade, Serbia

³Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), HCB-IDIBAPS Biobank, Barcelona, Spain

⁴Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Genetic Predisposition to Gastrointestinal Cancer, Barcelona, Spain

⁵The Netherlands Cancer Institute, Department of Pathology, Amsterdam, Netherlands

Introduction

Rectal cancer biobank (RCB) is the first human-sample, research-based repository in Serbia established by following highly controlled internationally approved biobanking criteria at the Institute for Oncology and Radiology of Serbia (IORS). The World Health Organization reported 42,000 new cancer cases in Serbia in 2022, which provides a rationale for further expansion of the IORS biobank with collections of other tumor types and locations besides rectal cancer. To implement best practices for effective strategic planning and management, we performed a SWOT analysis to address possible challenges in the process of IORS biobank development.

Material and method

A comprehensive evaluation of internal and external determinants that may impact the future growth and performance of the IORS biobank has been performed.

Result and discussion

Accessibility of patients with different tumor types, good logistic management between clinicians and biobank staff and a well-integrated bioethical framework at IORS,

allow extensive collecting strategy. Those advantages together with biobank team members who hold advanced knowledge and skills for various methodologies in processing of biospecimens and data annotation are major strengths that biobank growth can rely on. On the other hand, weaknesses include currently limited storage and working space that could not be easily improved considering project-based funding and a lack of legal clauses for implementation of a self-sustainability plan, considering the four dimensions of sustainability: operational, financial, social and environmental. Being the first official cancer biobank at the national level and also tightly collaborating with several international scientific groups and international biobanks, make opportunities for IORS biobank to take a significant place in contributing to cancer research in the region and beyond. However, the major threats to IORS biobank prosperity are lack of knowledge about biobanking from layman population, researchers and clinicians, deficiencies of national legislative regulations regarding the development of non-transplant tissue biobanks, national accreditation path, and the obstacles to enroll additional administrative and laboratory personnel without IORS executive department consent.

Conclusion

The results of the conducted SWOT analysis serve as a valuable foundation for development planning, assisted us to establish priorities, and challenge risky assumptions that could lead to misconceptions and failure of IORS biobank objectives. Complementary tools related to business planning and data management planning will be crucial to achieving excellence in national biobanking. [1] The RCB was established within STEPUPIORS Horizon Europe project No 101079217 according to guidelines recommended by international expert institutions (ISBER, BBMRI, ERIC).

EACR25-0423

Cardiac Remodelling and Incident Cardiovascular Risk in Haematological Cancer Survivors from the UK Biobank

<u>G. Andriamiadana</u>¹, J. Cooper¹, L. Szabo^{2,1}, D. Condurache¹, C. Maldonado-Garcia¹, S. Petersen¹, Z. Raisi-Estabragh¹

¹Queen Mary University of London, William Harvey Research Institute, London, United Kingdom ²Semmelweis University, Heart and Vascular Centre, Budapest, Hungary

Introduction

Haematological cancer survivors are at increased risk of cardiovascular disease (CVD) due to cancer-related biological processes and cardiotoxic cancer therapies. Cardiovascular magnetic resonance (CMR) provides detailed organ-level information about cardiovascular health. However, population-level studies examining long-term cardiovascular health in this population are limited. This study integrates clinical and CMR data from the UK Biobank to define the excess risk of specific CVDs and cardiovascular remodelling patterns in survivors of haematological cancer.

Material and method

Participants with a record of haematological malignancy prior to baseline recruitment were identified using linked hospitalisation and cancer registry data. Each cancerexposed participant was propensity score matched to two non-cancer controls on an extensive range of sociodemographic, lifestyle, baseline morbidity, and clinical biomarker variables. Missing covariate data were imputed using predictive mean matching. Cox regression was used to calculate hazard ratios for the following CVD outcomes: chronic ischaemic heart disease, nonischaemic cardiomyopathy, heart failure, myocardial infarction, atrial fibrillation, pericardial disease, and venous thromboembolism. Incident outcomes were prospectively ascertained from linked hospital and death registry records over a median of 13.6 years. In participants with CMR data available, linear regression was used to examine the association of cancer exposure with CMR-derived metrics of cardiovascular structure and function, and myocardial tissue character. These included ventricular and atrial volumes and function, arterial stiffness strain, and myocardial T1.

Result and discussion

A total of 2,166 haematological cancer survivors [median age 61, (IQR: 53-65) years; 56% women] and 4,331 controls were included in the analysis. Cancer survivors demonstrated a significantly increased incident risk for all selected CVDs, with the highest risks observed in relation to pericardial disease [HR = 6.38, 95% CI: 3.18-12.83]. Participants with haematological cancer had significantly large left ventricular volumes with poorer function (lower ejection fraction, worse global longitudinal strain), and pronounced myocardial fibrosis (higher T1).

Conclusion

Haematological cancer survivors have a significantly elevated risk of a range of incident CVDs. CMR analysis reveals adverse cardiac remodelling, comprising larger and poorer functioning left ventricle with greater myocardial fibrosis in haematological cancer survivors, compared to matched controls. These findings highlight the excess long-term cardiovascular risk of this cohort and the potential role of imaging biomarkers in risk stratification and understanding underlying mechanisms. *GA is supported by the Wellcome Trust (218584/Z/19/Z). JC, CM-G, and DG-C are supported by Barts Charity (G-002389, G-002777)*.

EACR25-0479

Genomic Profiling of Colloid Carcinoma of the Pancreas

<u>M. Bevere</u>¹, A. Mafficini¹, A. Scarpa¹, C. Luchini¹
¹University of Verona, ARC-NET Applied Research on Cancer Center, Verona, Italy

Introduction

Colloid carcinoma (CC) of the pancreas is a rare and distinct subtype of pancreatic cancer (PDAC), representing only 1-3% of all pancreatic tumors. Unlike the more common PDAC, CC is distinguished by the abundant extracellular mucin produced by tumor cells. CC often arises from intraductal papillary mucinous neoplasms (IPMNs), particularly of the intestinal subtype. While CC shares similarities with other pancreatic tumors in terms of symptoms, diagnosis, and treatment, it has a significantly better prognosis than PDAC. At the molecular level, CCs are associated with frequent

