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Abstract: (1) Background: This study aimed to develop a machine learning model based on radiomics
of pretreatment magnetic resonance imaging (MRI) 3D T2W contrast sequence scans combined with
clinical parameters (CP) to predict neoadjuvant chemoradiotherapy (nCRT) response in patients
with locally advanced rectal carcinoma (LARC). The study also assessed the impact of radiomics
dimensionality on predictive performance. (2) Methods: Seventy-five patients were prospectively
enrolled with clinicopathologically confirmed LARC and nCRT before surgery. Tumor properties
were assessed by calculating 2141 radiomics features. Least absolute shrinkage selection operator
(LASSO) and multivariate regression were used for feature selection. (3) Results: Two predictive
models were constructed, one starting from 72 CP and 107 radiomics features, and the other from
72 CP and 1862 radiomics features. The models revealed moderately advantageous impact of
increased dimensionality, with their predictive respective AUCs of 0.86 and 0.90 in the entire cohort
and 0.84 within validation folds. Both models outperformed the CP-only model (AUC = 0.80) which
served as the benchmark for predictive performance without radiomics. (4) Conclusions: Predictive
models developed in this study combining pretreatment MRI radiomics and clinicopathological
features may potentially provide a routine clinical predictor of chemoradiotherapy responders,
enabling clinicians to personalize treatment strategies for rectal carcinoma.

Keywords: rectal carcinoma; radiomics; neoadjuvant; chemoradiotherapy; MRI

1. Introduction

Colorectal carcinoma was the third most common cancer and the second most fatal
cancer with an estimated 1.4 million new cases worldwide in 2020 [1]. Due to the increasing
incidence in younger people [2,3], the American Cancer Society now recommends screening
starting at age 45 [4].

Rectal carcinoma prognosis varies by stage, with 5-year survival rates of over 90% for
early-stage and ~20% for late-stage disease [5]. The standard treatment for locally advanced
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rectal carcinoma is neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal
excision, with or without adjuvant chemotherapy [6]. This treatment is highly effective,
with low rates of local recurrence [6].

The clinical assessment of neoadjuvant treatment response for rectal carcinoma occurs
before surgery, using MRI scans. Clinical complete response (cCR) is determined as the
absence of residual disease in the rectum after neoadjuvant treatment, as confirmed by
digital rectal examination, endoscopic evaluation (rectosigmoidoscopy), and control MRI
examination. Another method of assessing treatment response is tumor regression grading
(TRG), which is based on the histopathological examination of tumor tissue postoperative
specimen. TRG is graded on a scale from 1 to 5, with TRG1 representing the best response
and TRG5 indicating the poorest response, characterized by no observable tumor regression.
TRG1 corresponds to pathohistological complete regression (pCR), which is observed in
10–30% of cases [7] and defined as the absence of viable tumor cells after total mesorectal
excision (ypT0N0). It has been shown that pCR is associated with improved outcomes,
regardless of the initial clinical T and N stages of the disease [8].

TRG is an important prognostic factor for local recurrence, disease-free survival, and
overall survival (OS) of rectal carcinoma patients. Patients with TRG 1-2 (good responders)
have significantly better outcomes than poor responders with TRG 3-5 [9].

More reliable predictors of nCRT response are needed to enable precision medicine in
routine clinical practice, thereby maximizing the effectiveness of existing treatments. Per-
sonalized treatment for chemoradioresistant patients may include second-line chemother-
apy, participation in experimental trials with more targeted therapies, more intense ra-
diotherapy, or combination therapy with immunotherapy. Conversely, to improve the
quality of life for patients responding well to neoadjuvant treatment, adjustments such as
less invasive surgery or a non-operative approach (“watch and wait”) may be considered.
However, such precision in clinical decision making is hindered by the limited reliability of
current clinical, pathological, and molecular predictors of chemoradioresistance in rectal
carcinoma, such as tumor stage, tumor regression grade, tumor markers (carcinoembryonic
antigen), circulating tumor DNA, DNA methylation level, and cancer-related inflammatory
markers [10,11].

In our previous work, we compared the proteomic profiles of LARC patients who
responded well and poorly to nCRT [12]. We also identified methylenetetrahydrofolate
reductase (MTHFR) 667C and 1298A alleles as low-penetrant risk factors for rectal can-
cer [13]. Moreover, we investigated the predictive value of clinicopathological features
in rectal carcinoma [14]. In this study, we enhance our predictive research by integrating
radiomics analysis.

Radiomics analysis of magnetic resonance imaging (MRI) scans can provide valuable
information for predicting nCRT response in rectal carcinoma, complementary to traditional
clinical and molecular methods. Radiomics extracts quantitative data from medical images
that are not visible to the naked eye. Most predictive imaging models for rectal carcinoma
previously used PET scans [15,16], while several used MRI. Some of these studies have
used post-nCRT MRI to assess treatment response rather than predict it [17–19]. Other
studies have used pretreatment MRI to predict nCRT response, predominantly relying on
features computed from unfiltered images [20], with occasional inclusion of wavelet [21]
and Laplacian of Gaussian (LOG) filters [22–24]. Image filters are used in MRI radiomics
to better emphasize texture or structural information. However, due to the limited use
of filters in radiomics analysis of rectal carcinoma, the predictive potential of several
commonly used filters, such as logarithmic, exponential, square, square root, exponential
and LBP, has remained unexplored. Additionally, the limited use of image filters in previous
predictive radiomics MRI studies has prevented the direct evaluation of how radiomics
dimensionality affects predictive performance. Notably, a recent study investigating the
effect of image filtering on radiomics features recommended conducting radiomics analysis
using all available filters [25].
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Consequently, to address the clinical need for improved prediction of nCRT response in
rectal carcinoma, this retrospective study systematically evaluated the predictive potential
of all available image filters and dimensionality in radiomics MRI analysis.

2. Materials and Methods

We utilized a retrospective cohort of patients with locally advanced rectal carcinoma
(LARC) who have undergone diagnostic MRI and neoadjuvant chemoradiotherapy. Pre-
treatment MRI scans were subjected to radiomics feature extraction, encompassing morpho-
logical and textural aspects of the tumor. The least absolute shrinkage selection operator
(LASSO) was then employed to train and validate the predictive model, employing statisti-
cal and cross-validation techniques to select the predictively most valuable features, thus
ensuring robustness and generalizability.

2.1. Ethics Approval Statement

The study received approval from the Ethics Committee of the Institute for Oncology
and Radiology of Serbia (Approval No. 2211-01 from 11 June 2020) and Ethics Committee
of the Faculty of Medicine, University of Belgrade (Approval No. 1322/XII-17 from 3
December 2020). It adheres to The Code of Ethics of the World Medical Association
(Declaration of Helsinki), as published in the British Medical Journal (18 July 1964) and its
7th revised edition in 2013. All patients signed an informed consent.

2.2. Patients

A total of 75 patients diagnosed with LARC were enrolled in this study. The patient
cohort was selected from patients treated at the Institute for Oncology and Radiology
of Serbia, spanning the period between June 2020 and January 2022. Inclusion criteria
required patients to have histopatologically confirmed adenocarcinoma of the rectum,
with the tumor located within up to 12 cm from the anal verge, as determined by rigid
proctoscopy. LARC was defined as encompassing T3-T4N0 stages or any T stage with
positive lymph nodes (N+). Pretreatment assessment included abdominal and pelvic MRI
scans, as well as computed tomography (CT) scans or chest X-rays. All patients underwent
long-course nCRT. Radiotherapy (RT) was administered using the volumetric modulated
arc therapy-simultaneous integrated boost technique (VMAT-SIB). The prescribed dose
to the mesorectum and pelvic lymph nodes was 45 Gy, administered in daily fractions
of 1.8 Gy. Additionally, a simultaneous integrated boost (SIB) was administered to the
macroscopic disease region with a 2 cm margin, totaling 54 Gy, delivered in daily fractions
of 2.16 Gy. Concomitant chemotherapy was initiated on the first day of radiotherapy and
continued during the first and fifth weeks of the treatment regimen. The chemotherapy
regimen comprised 5-fluorouracil (5-FU) at a dose of 350 mg/m2 on the first day of the
first and fifth weeks of radiotherapy, along with leucovorin (25 mg/m2 daily) administered
during the five consecutive days of the first and fifth weeks of radiotherapy.

The evaluation of tumor response was conducted eight weeks following the com-
pletion of nCRT and included pelvic MRI scans, rigid proctoscopy, and digital rectal
examination. For patients achieving complete clinical response (cCR) and initially distant
tumor location, immediate radical surgery was not recommended. Instead, they were
enrolled in a stringent follow-up program (“watch and wait” approach). Patients with
cCR who were candidates for sphincter preservation surgery underwent surgical resection
within a window of eight to twelve weeks following the completion of nCRT. For patients
exhibiting a partial response (PR), surgery was conducted approximately twelve to fifteen
weeks after the completion of nCRT. Patient selection overview is shown in Figure 1.
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After the completion of neoadjuvant chemoradiotherapy (nCRT) among 63 patients
who underwent operative treatment, 37 (59%) had surgery at the Clinic for Digestive
Surgery, University Clinical Center, Belgrade, while 26 patients (41%) underwent surgery
at the Institute for Oncology and Radiology, Belgrade.

Patients’ responses to treatment were categorized using the Mandard classification
system based on the pathohistological TRG observed in postoperative specimens. Respon-
ders included patients with cCR who did not require surgery, as well as those with TRG1
and TRG2 postoperative categories. Non-responders encompassed patients classified as
TRG 3–4.

2.3. MRI

Initial MRI data of the pelvic region were available for 71 out of the total 75 patients
included in this study. All MRI examinations featured 1.5-Tesla 3D T2-weighted (T2W)
contrast sequences, which were utilized for precise tumor delineation. MRI were acquired
at eight institutions, using the following scanner models: Siemens Magnetom Avanto Fit
1.5 T, Siemens Magnetom Symphony TIM 1.5 T, and Hitachi Echelon 1.5 T. To minimize the
effect of using different scanners, voxel intensities within tumor volumes of interest were
normalized by the z-score method prior to radiomics analysis.

Intra-observer reproducibility was assessed by comparing two segmentations per-
formed by the same observer (M.M.), 8 weeks apart to reduce recall bias. The similarity
between segmentations was estimated using the dice similarity coefficient (DSC), calculated
with a 3D Slicer (version 5.4.0). The mean (±standard deviation) intra-observer DSC was
0.936 ± 0.029 (range: 0.872–0.970). The mean (±standard deviation) intra-observer average
Hausdorff distance was 0.50 ± 0.04 mm (range: 0.11–1.39).

2.4. Postprocessing

The initial step in our analysis involved the import of MRI Digital Imaging and Com-
munications in Medicine (DICOM) files into the 3D Slicer and the subsequent generation of
multiple resolution bitmap (MRB files), streamlining the data for further examination [26].
For all 71 patients under consideration, a precise segmentation of rectal carcinoma tumor
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volumes, which refers to the process of delineating regions of interest (ROI), was carried
out. Sequences exhibiting any artifacts were excluded from the analysis to ensure the
highest possible image quality.

Tumor volume delineation was a collaborative effort involving both a radiation on-
cologist and reference to the initial radiologist reports, which provided critical guidance
in ensuring accuracy and consistency. The radiation oncologist (M.M.) with six years of
expertise in oncologic imaging manually segmented the volume of interest (VOI) on all 71
T2-weighted images using the open-source 3D Slicer software, v5.4.0. The segmentation of
the tumor was performed on each image slice where the tumor was visible. Figure 2 shows
the MRI sagittal plane before and after segmentation.
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Figure 2. Radiomics analysis workflow. Prior to radiomics analysis, images were z-score normalized,
resampled, and interpolated. The primary rectal tumors were segmented on T2-weighted MRI images
acquired before treatment. Sagittal MRI T2W sequence is shown with a red area corresponding to
the segmented primary rectal tumor. All available image filters were applied to the images and all
feature classes were computed. Feature values were also z-score normalized. We performed feature
preselection by discarding features without a significant association with the outcome. LASSO and
multivariate stepwise linear regression were used for feature selection to create two models: one
medium-dimensional and one very high-dimensional.

2.5. Sample Size Calculation

The prospective sample size calculation was based on a pilot experiment involving
36 patients. It required 40 patients with 18 positive cases for alpha = 0.05, beta = 0.20,
and area under the ROC curve AUC = 0.75 (Medcalc 14.8.1; MedCalc Software Ltd.,
Ostend, Belgium). The actually obtained AUCs for the two calculated scores including
clinicopathological and radiomics features were 0.86 and 0.90, with a final sample size of
71 patients.

2.6. MRI Normalization

Z-score normalization was applied to MRI images as instructed by the parameter file
listed below. Prior to radiomics feature extraction in 3D, all images and segmentations
were resampled and interpolated to obtain isotropic voxels of 1 mm3.

2.7. Feature Extraction

The computational analysis of rectal MRI images was conducted using the open-source
Pyradiomics plugin, integrated into 3D Slicer, named “Radiomics” [27]. PyRadiomics is
compliant with Imaging Biomarker Standardization Initiative (IBSI) standards. The Pyra-
diomics software was customized through the parameter file provided below, instructing
the generation of all available image transformations and feature types, resulting in the
computation of a total of 2141 features per image.
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setting:
normalize: true
normalizeScale: 100
resampledPixelSpacing: [1, 1, 1]
interpolator: ’sitkBSpline’

imageType:
Original:

binWidth: 10.0
LoG:

sigma: [1.0, 2.0, 3.0, 4.0, 5.0]
binWidth: 3.0

Wavelet:
binWidth: 3.0

Square:
binWidth: 4.0

SquareRoot:
binWidth: 8.0

Logarithm:
binWidth: 9.0

Exponential:
binWidth: 3.0

Gradient:
binWidth: 3.0

LBP2D:
binWidth: 0.1

LBP3D:
binWidth: 0.2

featureClass:
glcm:
firstorder:
shape2D:
shape:
glrlm:
glszm:
gldm:
ngtdm:

The width of discretization bins for feature extraction was adjusted separately for
each image filter in a pilot analysis of 37 MRI, targeting a bincount range between 30 and
130. Feature extraction was performed on the original images (107 features) as well as
after applying eight types of built-in preprocessing filters: wavelet (5 × 93 = 465 features),
square (93 features), square root (93 features), logarithm (93 features), gradient (93 features),
exponential (93 features), Laplacian of Gaussian (LoG, 5 × 93 = 465 features), local binary
pattern (LBP 2D, 89 features; LBP 3D 3 × 92 = 276). Wavelet filtering yields 8 subbands, all
possible combinations of applying a high or a low pass filter in each of the three dimensions.

Among the basic set of 107 original features, 18 were first-order intensity and
14 shape, while the remaining 75 were second-order texture features belonging to
six distinct classes: gray-level co-occurrence matrix (GLCM, 24 features), gray-level
run length matrix (GLRLM, 16 features), gray-level size zone matrix (GLSZM, 16 fea-
tures), gray-level dependence matrix (GLDM, 14 features), and neighboring gray-tone
difference matrix (NGTDM, 5 features). We adhered to the common assumption of
dimensionality: moderate: 10–100 dimensions, high dimensionality: 100–1000 dimen-
sions, and very high dimensionality: 1000+ dimensions. Detailed descriptions of the
extracted radiomics features can be found in the PyRadiomics documentation avail-
able at https://pyradiomics.readthedocs.io/en/latest/features.html, accessed on 26
October 2023.

https://pyradiomics.readthedocs.io/en/latest/features.html
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2.8. Normalization of the Calculated Feature Values

The computed variable values ranged between 6.24 × 1010 and −3.81 × 106. By
employing z-score normalization, we were able to bring values of all variables to
a similar scale, with values ranging between −6.60 and 8.31, thus enabling better
comparison among features.

2.9. Evaluation of Predictive Performance

Evaluation of the predictive performance for the demographic, MRI, clinicopatholog-
ical, and the radiomics features was approached by the univariate linear regression and
receiver operating characteristic (ROC) analysis, both executed using the IBM SPSS soft-
ware package version 28 by the IBM Corporation in Armonk, NY, United States. Our study
focused on the prediction of the response to chemoradiotherapy in rectal carcinoma as the
primary endpoint. In the case of univariate linear regression, we worked with continuous
values for independent variables, while the dependent endpoint was also expressed in
continuous numerical values, ranging from 0 to 4. Specifically, we assigned the values
as follows: cCR = 0, TRG1 = 1, TRG2 = 2, TRG3 = 3, and TRG4 = 4. Linear regression
assesses whether independent predictor variables explain the dependent variable (endpoint
or outcome).

ROC analysis requires a categorized dependent endpoint variable. The area under
the rate of change curve (AUC) was used to evaluate the discriminatory efficiency of the
prognostic features in relation to a binary endpoint. Discrimination refers to the ability
of the prognostic features to classify patients based on their actual metastasis occurrence.
AUC values range from 0.0 to 1.0, where 0.5 indicates random chance discrimination, while
values of 0.0 or 1.0 indicate perfect discrimination. Furthermore, it is of note that the AUC
not only quantifies the level of discrimination, but also offers directional information. For
instance, AUC values of 0.2 and 0.8 suggest the same level of discriminatory efficiency but
in opposite directions. We set a significance threshold at p ≤ 0.05 to determine the statistical
significance of our findings.

2.10. Model Selection

Predictive models were constructed using the features selected by LASSO regression
(Stata/MP 17, StataCorp, College Station, TX, USA) followed by stepwise multivariate linear
regression (IBM SPSS v28, IBM Corporation, Armonk, NY, USA). LASSO was performed
by the inclusion of radiomics features together with all 72 clinicopathological features.

Although LASSO handles multicollinearity and removes features unrelated to the
outcome, we performed feature preselection, prior to LASSO and multivariate regression.
Radiomics features which did not significantly correlate with the outcome by Pearson coef-
ficient were discarded. Dimensionality was further reduced by the use of LASSO regression
(Stata/MP 17, StataCorp, College Station, TX, USA), followed by backwards stepwise
multivariate binary regression (IBM SPSS v28). Clinicopathological features were exempt
from LASSO feature selection because only five features were significantly associated with
the outcome. LASSO regression is a machine learning regularization method that selects
covariates and estimates their coefficients using a tuning parameter λ in cross validation.
As λ increases, LASSO eliminates less important variables by shrinking their coefficients
to zero, providing robustness against outliers and improving generalization performance.
Multivariate stepwise backwards linear regression proceeds to remove the least significant
variables, one at a time. The removal of variables continues until the p value of the next
feature to be removed falls below 0.05, satisfying the stopping rule.

Features remaining after the applied selection methods were used for computation
of the radiomics scores, based on the selected features and the coefficients provided
by the regression methods, using the formula: variable1×coefficient1 + variable2 ×
coefficient2 + variable3 × coefficient3 + . . ..
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2.11. Validation

To mitigate the over-optimistic bias in the univariate and multivariate logistic regres-
sion analysis, the bootstrap technique was employed, generating 5000 random resamples of
the data, allowing for more robust estimation [28]. The original confidence intervals (95%
CIs) and p values were adjusted using this resampling approach, ensuring more reliable
results (IBM SPSS v28).

In addition, split-sample cross validation was utilized as a validation method to
determine the optimal penalty coefficient λ in the LASSO regression analysis conducted in
Stata/MP 17. This technique involved dividing the data into two subsets: a training set and
a validation set. The training set was used to fit the LASSO regression model and select the
most informative features, while the validation set was used to evaluate the performance
of the model.

3. Results

The predictive model comprised two scores: a moderately dimensional score derived
from 72 clinicopathological (CP) and 107 radiomics features, and a very highly dimensional
score derived from 72 CP and 1862 radiomics features. We also computed a CP score to serve
as the benchmark for state-of-the-art performance in predicting nCRT response. The nCRT
continuous outcome was defined in the order: clinical complete response (cCR), tumor
regression grade 1 (TRG1), TRG2, TRG3, and TRG4. For receiver operating characteristic
(ROC) analysis, we categorized this outcome into responders (cCR, TRG1, TRG2) and
non-responders (TRG 3–4) [21].

Table 1 provides a comprehensive overview of patient characteristics, disease specifics,
treatment details, and outcomes. Notably, direct tumor spread was the primary form of
involvement when the mesorectal fascia was affected. Pathological regional lymph nodes
were present in 97.3% of cases, and one-third of patients displayed extramural vascular
invasion (EMVI). In our cohort, 46.7% of patients were categorized as treatment responders.

We observed that LASSO sometimes selected features that were weakly associated
with the outcome. Therefore, we removed all features that did not significantly correlate
with the outcome before applying LASSO feature selection. This preselection improved
the predictive performance of the scores selected by LASSO. In contrast, removing highly
correlated features before LASSO did not affect the final results. The workflow of our
analysis is presented in Figure 2.

Table 2 presents features achieving the strongest predictive performance, from each of
the three categories: CP features, radiomics features computed from original MRI images,
and radiomics features computed from both original and filtered MRI images. Notably, out
of the 72 available CP features, only the five presented here are significantly associated with
the outcome. Univariate predictive analysis of the features in Table 2 using the Pearson
correlation test and univariate linear regression showed that individual features from the
CP and two radiomics feature groups had comparable associations with the outcome.

Table 1. Patient, disease, treatment, and outcome characteristics.

Features N (%)

Age (years)

Mean (SD) (Range) 60.8 (10.6) (33.0–81.0)

Gender

Female/Male 25 (33.3%)/50 (66.7%)

T in clinical TNM

T2 2 (2.7%)

T3 64 (85.3%)

T4 9 (12.0%)
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Table 1. Cont.

Features N (%)

N in clinical TNM

N0 1 (1.3%)

N1a 3 (4.0%)

N1b 18 (24.0%)

N1c 1 (1.3%)

N2a 22 (29.3%)

N2b 30 (40.0%)

Tumor differentiation

well/moderate/poor 39 (52.0%)/30 (40.0%)/6 (8.0%)

Mucinous histological type

Yes/No 13 (17.3)/62 (85.7)

Absolute basophil count (109/L)

Mean (SD) (Range) 0.1 (0.1) (0.0–1.0)

Tumor length (mm)

Mean (SD) (Range) 63.2 (18.6) (24–150)

CRM status

Uninvolved/Involved 36 (48.0%)/39 (52.0%)

Type of CRM involvement

By direct tumor spread 20 (26.7%)

By mesorectal TD or metastatic LN 15 (20.0%)

Both categories 4 (5.3%)

Uninvolved 36 (48.0%)

Extramural vascular invasion (EMVI)

Yes/No

Surgical treatment

No (cCR)/Yes 12 (16.0%)/63 (84.0%)

TRG score (Surgically treated patients)

TRG1 13/63 (20.6%)

TRG2 10/63 (15.9%)

TRG3 30/63 (47.6%)

TRG4 10/63 (15.9%)

Response to the treatment

R (cCR + TRG1 + TRG2) 35/75 (46.7%)

NonR (TRG3 + TRG4) 40/75 (53.3%)
Abbreviations: CRM, circumferential resection margin; TD, tumor deposits; LN, lymph nodes; cCR, patients
without operative treatment due to complete clinical response; TRG, tumor regression grade; R, responders; NonR,
non-responders.

We calculated a basic set of 107 radiomics features from the original images, including
14 size/shape, 18 intensity, and 75 second-order texture features. To enhance the depth
of our analysis, we applied 21 image transformations using various filters, including LoG
with five settings, wavelet with eight subbands, LBP 3D with two settings, and square,
square root, logarithmic, exponential, and gradient filters. This increased the total number
of features to 2141. However, we removed 279 features computed on images produced by



J. Clin. Med. 2024, 13, 421 10 of 18

wavelet decomposition into LHH, HLH, and HHH subbands due to the low gray level
intensity ranges. This reduced the total number of features to 1862.

Table 2. Univariate evaluation of the features most strongly associated with chemoradiotherapy
response in the three indicated groups of features a,b.

Feature Pearson c p R2 p

Clinicopathological features

Mucinous histological type 0.396 <0.001 0.157 <0.001

N stage 0.302 <0.001 0.091 0.010

Extramural vascular invasion 0.293 <0.001 0.086 0.013

Type of CRM involvement 0.278 <0.001 0.078 0.020

Initial basophil count 0.275 <0.001 0.076 0.020

Features calculated in original images

Original_shape_Max2DDiameterSlice 0.387 <0.001 0.150 <0.001

Original_GLSZM_SizeZoneNonUniformity 0.382 <0.001 0.146 <0.001

Original_GLSZM_SmallHighGrayLevelEmphasis 0.373 <0.001 0.140 <0.001

Original_GLDM_SmallDepHighGrayLevEmphasis 0.367 <0.001 0.135 <0.001

Original_NGTDM_Complexity 0.356 <0.001 0.127 <0.001

Features calculated in original and filtered images

Sqroot_GLDM_SmallDepHighGrayLevEmphasis 0.401 <0.001 0.161 <0.001

Squareroot_GLSZM_SmallHighGrayLevelEmphasis 0.398 <0.001 0.158 <0.001

Exponential_GLSZM_GrayLevelNonUniformity 0.377 <0.001 0.143 <0.001

Logarithm_firstorder_90Percentile 0.375 <0.001 0.141 <0.001

Squareroot_firstorder_90Percentile 0.372 <0.001 0.139 <0.001
a Univariate linear regression test. b Groups of features are highlighted by gray shading. c Pearson correlation
coefficient. Abbreviations: CRM, circumferential resection margin.

To address the high dimensionality of the data and improve the predictive performance
of the final models, we preselected radiomics features by removing those that did not show
a significant Pearson correlation with the outcome. This reduced the number of radiomics
features from 1862 to 365. We did not preselect CP features because only five of them were
significantly associated with the outcome.

After preselection, we used linear LASSO regression followed by multivariate stepwise
backward linear regression to select features. The aim of feature selection is to eliminate
redundant features and those that are irrelevant to the outcome. From the initial two
radiomics sets comprising 72 CP + 107 radiomics features and 72 CP + 1862 radiomics fea-
tures, LASSO selected nine and eleven features, respectively. Multivariate linear regression
further refined the models to five features each (Table 3).

To assess the benefits of comprehensive and very high-dimensional tumor charac-
terization, we compared the predictive performance of the two models described above:
one derived from a smaller set of 107 features and one derived from a much larger set of
1862 radiomics features (Table 3). Table 3 shows that the very high-dimensional model had
only a marginal improvement in predictive capability, with an R-squared value of 0.47,
compared to the R-squared value of 0.45 for the model with 107 features. This finding was
consistent with the ROC analysis presented in Figure 3.

ROC analysis requires a binary outcome; therefore, we categorized patients into
responders (cCR, TRG1, and TRG2) and non-responders (TRG3 and TRG4) (Figure 3).
cCR means that no cancer was detected in the primary tumor by imaging and physical
examination. TRG ranges from TRG1 and TRG2 (complete response and near complete
response, respectively) to TRG3 and TRG4 for moderate and poor response. Figure 3 shows
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that the score with the highest dimensionality computed using 72 CP and all 1862 radiomics
features had the best predictive performance.

Table 3. Predictive models incorporating clinicopathological and radiomics features obtained using
LASSO and multivariate linear regression a,b,c.

Feature Coefficient d

95% CI p Value

Model: from 72 CP features R2 = 0.30 b

Mucinous histological type Coefficient = 0.478
0.277–0.697 p = 0.001

Extramural vascular invasion Coefficient = 0.432
0.174–0.704 p = 0.001

Type of CRM involvement Coefficient = 0.322
0.058–0.600 p = 0.027

Model: from 72 CP + 107 radiomics features R2 = 0.45

Mucinous histological type Coefficient = 0.396
0.163–0.603 p = 0.001

Initial basophil count Coefficient = 0.395
0.249–1.301 p = 0.025

N stage Coefficient = 0.393
0.110–0.653 p = 0.010

Original_NGTDM_Complexity Coefficient = 0.385
0.111–0.581 p = 0.002

Original_firstorder_90Percentile Coefficient = 0.218
−0.006–0.482 p = 0.049

Model: from 72 CP + 1862 radiomics features R2 = 0.47

Mucinous histological type Coefficient = 0.258
0.068–0.431 p = 0.009

Initial basophil count Coefficient = 0.384
0.270–1.207 p = 0.0014

Type of CRM involvement Coefficient = 0.319
0.071–0.542 p = 0.008

Squareroot_firstorder_90Percentile Coefficient = 0.483
0.262–0.659 p = 0.001

Exponential_GLSZM_GrayLevelNonUniformity Coefficient = 0.377
0.178–0.528 p = 0.001

a Variable selection was performed by the use of the linear LASSO regression, followed by multivariate stepwise
linear regression based on probability of p = 0.05 for entry and p = 0.05 for removal. Univariate predictive
evaluation was performed by linear regression. b Nagelkerke R Square is used in linear regression to assess the
goodness-of-fit of the model. c Models are highlighted by gray shading. d Due to the z-score normalization
of feature values, the coefficients calculated by the multivariate linear regression analysis reflect the relative
predictive importance of features. Abbreviations: R2, R-square calculated by the univariate linear regression
analysis; CRM, circumferential resection margin.

Table 4 presents the five-fold stratified cross validation to evaluate the generalizability
of the top-performing predictive model presented in Table 3 and Figure 3. The cohort was
split into five evenly sized training and validation folds (subsets of the dataset). Importantly,
to avoid data leakage, validation data were not used during training. It is of note that
the model selected from 72 CP + 1862 radiomics features using the entire patient cohort
(Table 3) achieved very a similar predictive performance (AUC = 0.90) as the five models
derived from the same pool of features but were constructed separately in each of the
randomly split training folds (average AUC = 0.91; Table 4). When these models were
tested on matching unseen validation folds, the predictive performance decreased to an
average of 0.84 (Table 4).
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Figure 3. ROC analysis of three prognostic scores for chemoradiotherapy response. The chemora-
diotherapy response was stratified into two categories: responder (cCR, TRG1, and TRG2) and
non-responder (TRG3, TRG4). (a) ROC curves for the predictive scores: 72 clinicopathological fea-
tures (CP) score, 72 CP + 107 radiomics features score, and 72 CP + 1862 radiomics features score.
(b) Simplified visual representation of the classification between responders (white) and non-
responders (blue, green or red). The continuous values of the prognostic scores are ordered from
lowest (left) to highest (right). This figure illustrates that as the score values increase, the likelihood
of being a non-responder patient also increases.

Table 4. The predictive performance of the predictive model selected from all CP and radiomics
features in the training and validation folds a.

Feature Average AUC ± SD p Value

Training cohort 0.908 ± 0.010 p < 0.000

Validation cohort 0.843 ± 0.020 p < 0.001
a A five-fold cross-validation feature selection was performed using LASSO in each of the five produced training
folds. The generated models were then tested on the matching and unseen validation folds. Abbreviations: CP,
clinicopathological; SD, standard deviation.

Representative MRI images of nCRT responders and non-responders are shown in
Figure 4. The computed values of features (Figure 4) illustrate the classification of images
based on nCRT response. In the case of these four patients, original NGTDM complexity
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and 72 CP + 1862 radiomics scores were consistently higher in non-responder patients,
while the square root 90th percentile and exponential gray level nonuniformity were not
consistent. This association of increasing feature values with increasing TRG (reflecting
lower response to nCRT) was in line with the data presented in Table 1, because these
features yielded AUC values above 0.5. The texture features of tumors are subvisual,
making it difficult to visually distinguish between images of tumors from responder and
non-responder patients (Figure 4).
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Figure 4. Examples of analyzed MRI images in the T2W contrast sequence sagittal plane (a,b) nCRT
responders with cCR and (c,d) nCRT non-responders with TRG4. The values of several predictively
prominent features selected for the predictive scores (Table 3) are indicated for each image. Notably,
these feature values are in their native version, except for the score 72 CP + 1862 radiomics values,
which have been z-score normalized.

4. Discussion

The standard of care in LARC is nCRT followed by radical surgery. However, patient
responses to nCRT vary widely, and there is a lack of effective methods to identify patients
who would or would not benefit from the treatment. In this study, we developed two novel
MRI-based radiomics models to predict the response of LARC to nCRT. We also examined
the relationship between the depth of radiomics analysis and predictive performance.
Without an external cohort to evaluate the generalizability of our models, we showed
that the predictive performance was mostly retained in unseen validation folds using
cross validation.

This study highlights the complementary predictive power of clinicopathological and
radiomics features. The association of mucinous tumor differentiation with poor treatment
response was consistent with the findings of Simha et al. [29]. Similarly, MRI-derived
EMVI was associated with poor responses in this study, as in previous findings [30]. This
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EMVI-associated chemoradioresistance may be explained by tumor hypoxia, prompting the
investigation of dose escalation with adaptive MRI-guided radiotherapy for this group of
patients [31]. The identification of basophil counts as a predictive parameter in LARC was
also consistent with our previous study [14] and findings in advanced gastric cancer [32].

In line with most previous predictive studies in rectal carcinoma that used radiomics
analysis of MRI data, we investigated the T2W sequence. This sequence is considered the
most suitable for predictive purposes because it can capture predictive clues well, is less
susceptible to artifacts, and has good reproducibility [33].

With the inclusion of all available image filters, this study reports that the features
selected for predictive scores are derived from the original images and those generated
using previously unutilized exponential and square root filters. This finding is consistent
with a previous study that investigated the impact of preprocessing filters on the predictive
performance of radiomics analyses across seven radiomics datasets [34], whereby square
root, exponential, and wavelet filters achieved the best predictive performance [34]. The
exponential filter can enhance image boundaries and contrast, while the square root filter
highlights subtle textural patterns that might otherwise be difficult to detect and has noise
reduction properties.

Omics methodologies like radiomics exploit the advantages of comprehensive ap-
proaches involving thousands of features. However, using many features risks false
discoveries, where statistical significance may arise by chance. One goal of this study
was to assess the predictive benefits of the deepest radiomics approach. To achieve this,
we compared predictive models based on large and small numbers of radiomics features.
The model trained on 1862 features had a moderate predictive advantage over the model
trained on 107 features (AUC 0.90 vs. 0.86). This suggests that using a very large number
of features can capture additional predictively relevant information, even if a moderately
dimensional analysis with only 107 features already delivers very good predictive perfor-
mance. Although the improvement from AUC 0.86 to 0.90 may seem incremental, further
improvements become increasingly difficult as predictive performance nears the ideal AUC
of 1.0. Therefore, even small improvements in predictive performance by 0.04 AUC can
have a substantial clinical value, reducing the number of incorrectly classified patients
by 5%.

In this study, we developed radiomics signatures with three to five features after di-
mensionality reduction, while previous studies used up to 30 features [18,19,35]. A common
guideline is to use one feature for every ten patients [36,37]. As expected, our predictive
scores, which integrated both clinicopathological and radiomics features, outperformed the
benchmark predictive score based only on clinicopathological features. This finding aligns
with the previous report that radiomics features add value when combined with qualitative
MRI features [20] while most studies did not provide such comparison. However, some
studies have reported clinicopathological scores outperforming models that incorporate
radiomics features [38].

The fact that the MRI data were acquired at eight different institutions, presented an
advantage for this study by increasing its generalizability. Importantly, issues related to
comparability arising from diversity in MRI acquisition protocols and scanner models were
addressed through the standardization of voxel intensities using z-score normalization.
While chemoradiotherapy responsiveness is a surrogate endpoint that provides valuable
insights into treatment efficacy and short-term outcomes, it is important to recognize its
limitations because it serves as a measure for the true clinical outcomes of interest, like
disease recurrence or long-term survival [39]. Not all patients who respond to nCRT will
experience long-term disease control and conversely, not all non-responders will have
poor outcomes. Furthermore, although our patient cohort was highly homogeneous and
largely exceeded the required sample size, its overall size remains a limitation, although
we performed thorough internal validations using cross validation and bootstrapping.
Generalizability of the obtained predictive models was supported by cross validation
at two levels, in the entire cohort through LASSO feature selection and by a five-fold
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cross validation, where models generated in the training folds were tested on unseen
validation folds. Remarkably, predictive performance was very similar in the entire cohort
and in the half-sized randomly generated training folds, while in the unseen validation
folds, AUC only moderately decreased to 0.84. The absence of an external cohort is a
limitation of this study because we were unable to exactly determine how well our models
would generalize to a different population. Therefore, future studies incorporating external
cohorts are planned within our European consortium of institutions dedicated to rectal
cancer research (the Horizon Europe project STEPUPIORS—101079217) to further validate
the generalizability of our radiomics models in broader patient populations. Additionally,
while the computational analysis technique is entirely objective, there is still some residual
subjectivity involved in tumor VOI selection for radiomics analysis. The retrospective
design of the predictive model is another limitation. Also, the feature selection using
LASSO is susceptible to multicollinearity and lacks the statistical test for significance. In
our study, we found that LASSO effectively handled multicollinearity, as removing inter-
correlated features before the LASSO selection did not impact the results. However, the
removal of features with no significant correlation with the outcome yielded favorable
results, indicating that through feature preprocessing, we successfully addressed a major
limitation in the feature selection process. Other studies have employed similar multi-step
approaches to feature selection, involving initial steps like the Wilcoxon rank-sum test,
Spearman correlation analysis, followed by LASSO, and multivariate logistic regression
analysis [35,40].

5. Conclusions

We developed very highly dimensional and moderately dimensional predictive mod-
els for neoadjuvant chemoradiotherapy (nCRT) response in rectal carcinoma, using clinical
parameters and pretreatment MRI radiomics features. These models outperformed the
benchmark model relying on clinicopathological parameters alone. We also showed that
using all available image filters and high dimensionality improves predictive performance.
The combined clinicopathological and radiomics scores obtained in this study provide
a foundation for future broader multimodal predictive approaches that also incorporate
genomics [14] and proteomics [12] data. Improved prediction of nCRT response might
be clinically significant because it may enable personalized treatment decisions such as
delaying surgery or using less aggressive postoperative therapies to minimize toxicity in
predicted nCRT responders. For predicted non-responders, more intensive therapies with
shorter follow-up periods may reduce recurrence risk.
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